Darboux polynomials and rational first integrals of the generalized Lorenz systems
نویسندگان
چکیده
In this paper we characterize all Darboux polynomials and rational first integrals of the generalized Lorenz systems: ẋ = a(y − x), ẏ = bx + cy − xz, ż= dz+ xy. Our results include the corresponding ones for the Lorenz systems, the Chen systems and the Lü systems as special cases. © 2011 Elsevier Masson SAS. All rights reserved. MSC: 34A34; 34C20; 34C41; 37G05
منابع مشابه
A Rational Approach to the Prelle-Singer Algorithm
The Prelle–Singer procedure (Prelle and Singer, 1983) is a development of the Darboux (1878) procedure for finding elementary first integrals of two-dimensional polynomial vector fields (P, Q) where P , Q ∈ C[x, y]. Even if P , Q have coefficients in Q, we may need to introduce algebraic numbers (e.g. i, √ 2, etc) during the computations of the irreducible Darboux polynomials fk required in ste...
متن کاملDarboux Polynomials for Lotka-volterra Systems in Three Dimensions
We consider Lotka-Volterra systems in three dimensions depending on three real parameters. By using elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for such systems for various values of the parameters, and give the explicit form of the corresponding cofactors. More precisely, we show that a Darboux polynomial of degree greater than one is reduc...
متن کاملDarboux Polynomials and First Integrals of Natural Polynomial Hamiltonian Systems
We show that for a natural polynomial Hamiltonian system the existence of a single Darboux polynomial (a partial polynomial first integral) is equivalent to the existence of an additional first integral functionally independent with the Hamiltonian function. Moreover, we show that, in a case when the degree of potential is odd, the system does not admit any proper Darboux polynomial, i.e., the ...
متن کاملComputation of Darboux polynomials and rational first integrals with bounded degree in polynomial time
In this paper we study planar polynomial differential systems of this form: dX dt = Ẋ = A(X, Y ), dY dt = Ẏ = B(X, Y ), where A, B ∈ Z[X, Y ] and degA ≤ d, degB ≤ d, ‖A‖∞ ≤ H and ‖B‖∞ ≤ H. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D = A(X, Y )∂X + B(X, Y )∂Y . Darboux polynomials are usually comp...
متن کاملEfficient Algorithms for Computing Rational First Integrals and Darboux Polynomials of Planar Polynomial Vector Fields
We present fast algorithms for computing rational first integrals with bounded degree of a planar polynomial vector field. Our approach builds upon a method proposed by Ferragut and Giacomini ([FG10]) whose main ingredients are the calculation of a power series solution of a first order differential equation and the reconstruction of a bivariate polynomial annihilating this power series. We pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012